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COMMENT 

Low-temperature expansion of the planar spin model 

C Twining 
Department of Applied Mathematics and Theoretical Physics, University of Liverpool, 
PO Box 147, Liverpool L69 3BX, U K  

Received 30 November 1987 

Abstract. We present new low-temperature series results for the 2D planar spin model. 
High- and low-temperature series results for the energy density are shown to reproduce 
Monte Carlo simulation results for TSO.6 and T >  1.3 to within one per cent. 

The planar spin model exhibits an infinite-order Kosterlitz-Thouless type transition 
(Kosterlitz and Thouless 1973, Kosterlitz 1974). Monte Carlo simulations (Tobochnik 
and Chester (1979), Metropolis algorithm; Kogut and Polonyi (1986), microcanonical 
ensemble) yield results consistent with the KT picture. Whilst series expansions at high 
temperature have been performed (Camp and Van Dyke (1975), susceptibility to tenth 
order; Bowers (1969), free energy to eighth order) at low temperatures, the conventional 
spin-wave approximation considers only the lowest-order terms. In the following 
calculation, we consider the simplest observable, the energy density, and obtain the 
next three corrections to the spin-wave result. 

The 2~ planar spin model is defined by the following action: 
1 

S = - -  [ c o ~ ( e , - e , ) - i ] .  
( 1 . J )  

The variables 8, are angles lying between 0 and 27,  the indices i, j label sites on a 2~ 

square lattice of unit spacing, and the summation is over nearest-neighbour sites, each 
pair counted only once. In the limit of an infinite lattice, we have the following Fourier 
transform: 

8, = d p 8 ( p )  exp(ip. r , )  I 
where 

* d2p I di = I, (2.rr)z 
and r, is the position vector of site i. Following Luck (1982), we expand the cosine 
in the action and transform to momentum space to obtain the spin-wave action: 
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where 
- 1  

? T ( p )  = ( 2  c (1 -cos p ? )  . 
Ir 

The Fourier transform of T (  p )  is the usual ZD lattice Green function G ( r ) .  We define 
the normalised Green function 6( r ) 

6( r )  = G ( r )  - G(0) .  

Consider the energy per site, 

E = 2[1 -(exp[i(O, - e,)])] i, j = arbitrary fixed link. 

If we introduce the following source term: 

~ ( p )  = $ [ I  -exp(ip”)] v = direction of link i, j 

then 

E = 2 ~ 1 -  ~ [ J I ]  U J I  = Z[Jl/Z[OI 
where Z[J] is the source-dependent generating functional 

In T[J] is then the sum over all J-dependent connected diagrams. The power of T is 
given by the number of propagators minus the number of vertices. All diagrams to 
0(T4) are given in figure 1 ;  
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Figure 1. All J-dependent connected diagrams to O( P) 
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by symmetry, and for all size lattices. If we define 

A , , ( x ) =  dF.rr(p) exp(ip.x)[l-exp(ipK)][l  -exp(-ip”)] I 
then the coefficients a and b are given by 

a = i  c c A4,,(4 
,.U x 

b = c A : , ( x + y ) A t , ( y ) A : , ( x ) .  

The values of a and b can then be computed for a finite lattice. 

-.,,U X.Y 

To O( T4), we obtain the following series for E :  

E = f T + A T 2 +  ( & + & U )  T 3  + (&+&a +gb) T4. 

Calculating the coefficients a and b on lattices of increasing size, the values were found 
to converge towards the limits 

a = 0.0684( 1) b = 0.0206( 1). 

The series of E up to O ( T 3 )  has been recalculated, using an x-space expansion of 
Z[O] on a finite periodic lattice. This gives identical coefficients, indicating that the 
above series is valid for finite lattices, as well as for the infinite lattice limit. This can 
also be seen by considering the above calculation with momentum integrals replaced 
by discrete sums, and S functions by periodic S functions. 

In figure 2, the spread of the Pad6 approximants to the above series, calculated at 
L=60,  is plotted together with data from a Monte Carlo simulation of a 3600 spin 
system (Tobochnik and Chester 1979). Also shown is the spread of the Padi 
approximants to the high-temperature series, derived from expressions given by Bowers 
(1969) and Domb (1960): 

1 3 1  1 1  31 1 
T 8 T 3  48 T 5  3012 T7 

E = 2  +- -+o( T - ~ ) .  

The error bars on the data are comparable in size to the plotted symbols. The Pad6 
approximants agree with the data to within one per cent over the range T s 0.6 and 
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Figure 2. Spread of Pad6 approximants (broken curves) to high- and low-temperature 
series, together with Monte Carlo data (dots). 
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T 3 1.3.  This represents, at low temperatures, a distinct improvement over the spin-wave 
result, and a more reliable check on possible approximation schemes or new numerical 
algorithms. 

The calculation illustrates the difficulties in continuing the series to higher orders. 
Further coefficients, arising from graphs with n non-trivial 6 functions, will involve 
O( L 2 " )  operations, which soon becomes prohibitively large. 

The method can be generalised to calculate the susceptibility x, where 

x = 1 (exp[i( @(x)  - @ ( O ) ) l )  = 1 r[J,1 
1 1[ 

and J ,  is the source term, 

J,( p )  = $[ 1 - exp( -ip x)]. 

Although the diagrammatics is identical and the calculation to O( T 2 )  is straightforward, 
it is again the 6 functions which complicate matters at  O( T 3 )  and higher. 

My thanks to Dr A C Irving for his encouragement and many useful discussions. 
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